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Signal Intensity Deconvolution in Optical Receivers
Conner DiPaolo and Ryan Rogalin

Abstract—In a photon-counting free-space optical communica-
tion receiver, the signal energy should be centered on the photo-
detector in order to maximize the received signal power. Random
spatial fluctuations of the beam can be induced by atmospheric as
well as mechanical phenomena. In order to control a compensator
for driving the beam to the center of the detector, we must be
able to infer the location of the centroid with only rudimentary
spatial information (the number of photons that have hit each
quadrant of the detector). We close this control loop by making
a reduction to the task of signal intensity reconstruction via an
inverse problem, proving non-asymptotic estimation error bounds
for a previously published method and novel simplification, and
presenting two novel estimation schemes that empirically perform
better in near- and medium-range deep space settings. Our
centroid estimation method is the first procedure in the literature
proved to be consistent.

Index Terms—Optical communications, control, inverse prob-
lems, statistical estimation, sample complexity.

I. INTRODUCTION

MUCH of deep space exploration has relied on radio
transmission for communication, yet higher data re-

quirements have pushed the communication model towards
the better performing optical regime [1, Fig 1.1]. For a com-
prehensive survey, see [1]. For example, NASA’s Lunar Laser
Communications Demonstration in 2013 was able to achieve
more than six times the best bit-rate of any radio link at
similar distances [2]. For these reasons and more, NASA
has decided to fly the Deep Space Optical Communication
(DSOC) instrument on the upcoming 2022 Psyche mission at
the unprecedented distance of 3AU [3].

Prior Art. Being able to focus, and as a necessity determine
the location of, the photon beam of an optical communication
link into the receiver is paramount, since extremely small spot
sizes (compared to radio communications [1, Ch 5.3]) limit
error tolerance. For quadrant separated receivers, Gagliardi and
Sheikh [4] suggest simply differencing the number of incident
photons above and below the x- and y-axes, respectively, to get
rudimentary information about the location of the centroid. At
far range with commensurately low signal-to-noise ratio this
method has high variance [4, Fig. 4]. Analysis in [5] locally
characterized the stability of jointly acting control systems
relying on these estimates, but high variance in the input
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estimates can ensure that the transient, erroneous behavior of
the system dominates the steady-state as seen in [4]. Other
work in this area deals with high resolution receivers at close
range, where the Gagliardi-Sheikh approach or a center of
mass computation is employed. See, for example, [6] and
[7, Fig 7] from the communications community and [8] from
the optics community. Tracking Earth from a spacecraft has
similar requirements; the standard method simply correlates
the receiver photon image with a reference image of Earth
[1, Ch 5.3.5.1.1] [9]. This is irrelevant in our case since the
spacecraft is miniscule and occluded by atmosphere. Recent
work of [10, 11] uses maximum likelihood centroid estimates
to track the beam, but this work assumes a-priori knowledge
of the background and signal intensity which in our case is not
available; a lower bound on tracking convergence is presented
but no upper bound on convergence is given.

Contributions. We frame centroid estimation (and hence,
centroid control) as finding the proportion of signal photons
in each receiver quadrant through an inverse problem. We
show that consistent estimators of these proportions yield
consistent estimators of the centroid, something that cannot
be said for the Gagliardi-Sheikh centroiding method, or the
numerical center-of-mass approach, which both retain intrinsic
error from discretization, and in the latter case even forces
estimates to be in [−R, R] × [−R, R] for a radius R detector
[12, Fig 10.15] [6, Fig 8]. This hands us a natural reduction
to the problem of deconvoluting signal intensity Ks from
background intensity Kb in each quadrant. In this realm, we
derive non-asymptotic sample complexity and L2 risk bounds
for a previously published method and a novel simplification,
which hand practitioners straightforward guidance on integra-
tion times needed to estimate Kb and Ks . We also propose
two non-consistent methods for Kb and Ks estimation that
empirically outperform the former in low and medium range
settings at low integration times. Guarantees help decoding
too, since this relies on Kb,Ks estimates through both channel
estimation and the decoding algorithm [13].

Notation. 0n, 1n ∈ Rn are the all-zero and -ones vectors. ⊕
gives the concatenation of two vectors.

II. THE INVERSE PROBLEM

In the typical Pulse Position Modulation optical communi-
cations model [12, Ch 6.7], pulses of photons are sent during
one of M time slots, each corresponding to a specific bit
sequence for the symbol. With the addition of Inter-Symbol
Guard Times, P < M time slots that never receive a photon
pulse are appended to each symbol. This is done for statistical
timing synchronization [14]. In the example symbol below,
M = 8 and P = 2, while the signal slot j = 3 corresponding
to the bits 010 is transmitted.
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The background and signal photon intensities in each slot are
Kb and Ks , respectively. Under the Poisson model [1, 12],
the number of photons received in slot i ∈ {1, . . . , M + P} are
distributed Xi ∼ Pois(Kb+δi jKs), conditioned on the uniformly
distributed signal slot j ∼ Unif{1, . . . , M}. We will largely
ignore the estimation of the timing offset of the first slot.

Write D for the radius R circle centered at the origin and
Di for the i-th quadrant of D. The proportion of photons from
the communications beam hitting each quadrant i ∈ {1, 2, 3, 4}
in the receiver D is

Pi(x0, y0) =

∬
Di

φ
( x−x0
σ

)
φ
( y−y0
σ

)
dA

(∬
D

φ
( x−x0
σ

)
φ
( y−y0
σ

)
dA

)−1

collected into a vector p = (P1, . . . , P4), where φ is the zero
mean unit variance Gaussian density function, (x0, y0) ∈ R

2

is the beam center relative to the receiver, and σ is the
beam width. This can be computed numerically. In the case
with noisy observations p̃, a simple and fast way to find the
generating centroid is to solve a least-squares problem

(x̂0, ŷ0) = arg min
(x0,y0)

p(x0, y0) − p̃
2

2 = arg min
(x0,y0)

f (x0, y0). (1)

Empirically, f is quasi-convex within a large berth around
the receiver. Take p̃ = p( 12,

1
2 ), R = 2σ = 1, and vary

f (x0, y0) along x0 = y0 to exhibit non-quasi-convexity at
around x0 = −2R. To make consistency guarantees about
(x̂0, ŷ0) we need to know that p : R2 → R4 is injective. This
global identification is a surprisingly difficult verification as
often seen in econometrics in the context of the Generalized
Method of Moments [15, p.2127]. Luckily, we can make an
analytical argument (in the Appendix) that gives this result.

Lemma 1. p : R2 → R4 is injective.

Theorem 2. If p̃ → p in measure, in distribution, or almost
surely as the number of observed symbols increases, then
(x̂0, ŷ0) → (x0, y0) in the same manner.

Proof. ‖ p(x ′0, y
′
0) − p(x0, y0)‖

2
2 is minimized only when

(x ′0, y
′
0) = (x0, y0) by Lemma 1. Joint continuity of f ensures

that (x̂0, ŷ0) is continuous in p̃ at p̃ = p by Corollary 8.1
of [16]. Applying the Mann-Wald Theorem [17] guarantees
that this continuous function (x̂0, ŷ0) of a convergent random
variable p̃ → p converges to (x0, y0) in measure, distribution,
or almost surely so long as p̃ → p with the same mode of
convergence. �

Since consistent estimates K̃i of Ks in each Di grant
consistent estimates of p as p̃i = K̃i/(K̃1 + · · · + K̃4) by
the same Mann-Wald Theorem [17], Theorem 2 suggests that
improved algorithms for Ks estimation can result in more
efficient centroid estimates. This follows since accelerated
convergence of Ks would directly accelerate convergence of
the estimated slot counts p̃i , which carries through to our
estimates of (x0, y0) by Theorem 2.

III. Ks ESTIMATION AND SAMPLE COMPLEXITY

Like most work on guaranteed estimation of inverse prob-
lems, estimation of Kb and Ks relies on structural assumptions
about the signal. Luckily, strong structural guarantees given
by the inter-symbol guard time slots make coming up with
viable estimators relatively straightforward. Bounds, on the
other hand, take much more work. Let y ∈ NM+P be a vector
corresponding to the total photon count in each time slot over
n symbols. The elements Yi of y are distributed according to
the following generative process:
(1) Draw pulse count n ∼ Multinomial(n, 1

M 1M ⊕ 0P),
(2) Draw photon counts Yi ∼ Pois(nKb + niKs).
Maximum likelihood or Bayesian estimation of Kb and Ks

(see, Section IV) is intractable unless we know or can ac-
curately estimate the bit sequence. In the presence of high
background radiation this gives high bias, so in practice
estimators based on arguments using the law of large numbers
are used. For example, the law of large numbers guarantees
1
nYi → Kb +

1
M Ks for i = 1, . . . , M and 1

nYi → Kb for
i = M+1, . . . , M+P almost surely as n→∞, so the following
estimators for Kb and Ks are strongly consistent:

K̂b = min
j

1
n(P − k)

P−k∑
i=1

Yi+j mod M+P,

K̂s = max
j

M
n(M − k)

M−k∑
i=1

Yi+j mod M+P − MK̂b .

The maximum is done to account for gross timing offset
errors in practice, and k ∈ {0, 1} is set to k = 1 to account
for fractional errors in the timing offset. These estimators
were written with the incorrect scaling in [13]; The above
formulation corrects that typographic mistake. We can retain
the performance (both empirically and in terms of strong
consistency) in a simpler version of the above scheme by
instead using K̃s =

1
n

∑M+P
i=1 Yi − (M + P)K̂b . This will

be called the improved convolutional scheme, differentiated
symbolically with K̃s instead of K̂s . It non-trivially faster to
compute, requiring one fewer convolution.

For analysis, we start with some lemmata, the first of
which may be of independent interest. The following proofs
rely heavily on bounding the Cramér transforms of random
variables. For more details on this technique, see [18] or the
proofs in the Appendix.

Lemma 3. Let Xi ∼ Pois(λi) for i = 1, . . . , N where λmin =
min λi ≥ log(N) + 1 and λmax = max λi > 2 log N . Then

Emin Xi ≥ λmin − log(N + 1), Emax Xi ≤
λmax − log N

1 −
√

2 log N
λmax

.

Lemma 4. Let n ∼ Multinomial(n, 1
M 1M ⊕ 0P) and n

(j)
∗ =∑M−k−1

i=0 ni+j mod M+P for all j = 0, 1, . . . , M + P − 1 and k ∈
{0, 1}. If m∗ =

1
n(M−k) max n

(j)
∗ −

1
M then

Em∗ <
k

M − k

√
2
n
+

k
√

2n
(M − P)e−

nP2

2M2 .

Moreover, if n ≥ 2 M2

P2 log
(M(M+P)

2
)

then Em∗ < k
M−k

√
8
n .
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The following Corollary combines Jensen’s inequality ap-
plied to f (x1, . . . , xn) = max{x1, . . . , xn} with the above
Lemmas to bound the bias of K̂b, K̂s, and K̃s .

Corollary 5. Write S = M + P for clarity.

max
{
|EK̂b − Kb |,

|EK̃s − Ks |

S

}
≤

log(S + 1)
n(P − k)

whenever n ≥ log(S)+1
(P−k)Kb

, and

|EK̂s − Ks | ≤
M log(S+1)
n(P−k) +

kKs

M−k

√
32
n +

MKb+Ks√
n

√
8 log S

(M−k)Kb+Ks

when n ≥ max
{ log(S)+1
(P−k)Kb

,
8 log S

(M−k)Kb+Ks
, 2 M2

P2 log
(
MS
2

)}
.

Bounding the variance of these estimators is much simpler
through use of the Efron-Stein inequality [18, Thm 3.1].

Lemma 6. Denote K = Ks + K2
s . Then

max
{
Var(K̂b),

Var(K̃s)

(M + k)2
,
Var(K̂s)

4M2

}
≤
(M + P)Kb + K

n(P − k)2
.

Proof. If X and X ′ are i.i.d then E(X − X ′)2 = 2 Var(X). If
we only consider one slot yi , the functional

K̂b(. . . , yi, . . .) = min
j

1
n(P − k)

P−k∑
i=1

yi+j mod M+P

is a minimum of n−1(P−k)−1-Lipschitz functionals, and hence
n−1(P− k)−1-Lipschitz. Write y ′i for y with the i-th coordinate
Yi replaced with an independent copy. The Lipschitz property,
and the Efron-Stein inequality guarantee

Var(K̂b) ≤
1
2

M+P∑
i=1
E[(K̂b(y) − K̂b(y

′
i))

2] ≤

∑M+P
i=1 Var(Yi)
n2(P − k)2

Calculating Var(Yi) = nKb +
n
M Ks +

n
M (1 −

1
M )K

2
s for i =

1, . . . , M and Var(Yi) = nKb otherwise gives us the result. The
arguments for K̃s and K̂s are similar. �

The bias-variance decomposition of L2 loss gives concen-
tration by a Chebyshev-style bound. We note that one can di-
rectly prove exponential concentration bounds for K̂b , K̂s , and
K̃s with O(log δ−1) sample-complexity via sub-exponentiality
of the Poisson and Binomial, but a seemingly necessary
triangle inequality application makes this unbearably loose for
practical parameter settings.

Theorem 7. Denote K = Ks + K2
s . The mean squared error

E(K̃s − Ks)
2 ≤

2(M + P)2

n(P − k)2
[
(M + P)Kb + K

]
whenever n ≥ max

{ log(M+P)+1
(P−k)Kb

,
log2(M+P+1)
(M+P)Kb+K

}
. In particular,

ensuring n is in this valid range and

n ≥
2(M + P)2

ε2δ(P − k)2
[
(M + P)Kb + K

]
ensures |K̃s − Ks | < ε with probability at least 1 − δ.

For K̂b and K̂s , adding the square of the bias from Corollary
5 and variance from Lemma 6 gives us similar L2 risk bounds
and concentration results. Known scenario parameters (see
Section V) can be used to turn these bounds into guidance.

IV. FASTER Ks ESTIMATION AT MEDIUM RANGE

While the estimation scheme presented in Section III is
guaranteed to work with the asymptotically minimax rate for
Poisson mean estimation, reliance of the convergence of the
slot counts can be improved in the case that we know (or can
estimate easily as ĵ = arg max Xi) the signal slot. The simplest
setup is to include j during maximum likelihood estimation of
({ j(n)},Kb,Ks) given symbols (X (n)i ). One can show that this
estimator satisfies the online updates

K̂ (n)
b
=

n − 1
n

K̂ (n−1)
b

+
1

n(M + P − 1)

[M+P∑
i=1

X (n)i − X (n)
ĵ(n)

]
,

K̂ (n)s =
n − 1

n

[
K̂ (n−1)
s + K̂ (n−1)

b

]
+

1
n

X (n)
ĵ(n)
− K̂ (n)

b
,

via a standard calculus-based argument (as in [19, Ch 9.3]) us-
ing the stationarity of Kb and Ks . By including the signal slots
{ j(n)} in the maximum likelihood computation we implicitly
assume that the slot which receives the most photons is the
signal slot. If ĵ(n) = j(n), the estimators are unbiased and their
mean squared errors are both at most n−1(Kb +Ks). In reality,
ĵ is a poor estimate when Kb/Ks is large; K̂ (n)s over-estimates
Ks and K̂ (n)

b
under-estimates Kb in expectation.

An Approximate Variational Filter (AVF) is another possible
solution. Here, at each symbol we update our beliefs about
Kb and Ks by assuming j = ĵ. This is intractable to maintain
explicitly, but repeated projection of posteriors into the prior
space maintains tractability. This projection step is called
variational inference; for the projection we simply moment
match [20]. For our model, if we posit independent Gamma
priors Kb ∼ Gamma(αb, βb) and Ks ∼ Gamma(αs, βs) we
can expand the posterior as a mixture of Gamma distributions
by classically applying Bayes’ rule and using the binomial
theorem to reduce the signal slot term (Kb+Ks)

X ĵ into powers
of Kb and Ks . The resulting posterior is generated by the
following process:

(i) Draw i ∼ Categorical(wk),
(ii) Draw Kb |i, j, {Xk} ∼ Gamma(X−j + αB + i, M + P + βb)

and Ks |i, j, {Xk} ∼ Gamma(Xj + αb − i, 1 + βs).
where the mixing weights

wk ∝

(
Xj

k

)
Γ(X−j + αb + i)Γ(Xj + αs − i)

(M + P + βb)X− j+αb+i(1 + βs)Xj+αs−i

and X−j =
∑

k,j Xk . From the above we can readily compute
the posterior mean and variances in order to moment match
back to Gamma distributions. In the posterior, i corresponds to
how many photons in the signal slot belong to the background
noise. Consideration of this trade-off allows the AVF to
slightly outperform the maximum likelihood estimator (MLE).

V. EMPIRICAL PERFORMANCE

We evaluate the performance of the algorithms in three
regimes of interest for deep space: At near-Earth range,
Kb ≈ 0.00239, Ks ≈ 2.56, and M = 16. At medium range,
Kb ≈ 0.00869, Ks ≈ 2.83, and M = 128. At far range,
Kb ≈ 0.04575, Ks ≈ 0.395, and M = 128. For regulatory
reasons, only slot widths with M = 4P are used, so we only
show these parameter settings in our computational examples.
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Fig. 1. Sample average ±2σ̂ of centroid norm of an idealized receiver
undergoing PID control with Kp = 0.2, Ki = 0.1, and Kd = 0, and centroid
starting from (x0, y0) = (−

3
4,

1
5 ) at medium range. The receiver R = 2σ = 1.

Ks estimation is done via the K̂s scheme over n = 1000 symbols.

100 101 102 103 104

n Symbols at Medium Range
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K̂
s
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M
S
E

AVF

MLE

K̂s

K̃s

K̂s Bound

K̃s Bound

Fig. 2. Medium range comparison of different estimation algorithms for Ks .
Note that the AVF and MLE estimation schemes outperform the convolutional
estimation for n . 2000 before slot estimation bias dominates.

With noise, centroid estimates tend to shrink towards the
origin, but the angular bias remains quite small (∼ 10−2 radians
if we assume Ks estimates are distributed as truncated normals
with the correct proportion mean and standard deviation 0.3).
As a result, simulating a control environment (Figure 1) in the
medium range regime returns fast convergence that is highly
robust to the noise in the Ks estimates, even though (Figure 2)
the relative error in the Ks estimates at the chosen n = 1000
integration time is on the order of 5-10%. The increase in error
around step t = 7 corresponds to overshooting the origin, and
could be reduced by tuning the control parameters further.

In terms of Root Mean Squared Error (RMSE), the medium
range scenario benefits most from the acceleration described
in Section IV (Figure 2). At close range, the Section IV
estimators consistently outperform the convolutional estima-
tion of Section III by a multiplicative factor of about 1.2. In
deep space, where background intensity starts to dominate, the
convolutional estimators outperform the accelerated scheme
as early as n = 100 symbols. For Ks estimation, the upper
bound on the K̃s performance beats the Section IV estimators
at n ∼ 200. For K̂s this happens at n ∼ 1000 symbols. The
upper bounds on performance derived in Section III get quite
tight as we move to far range, where the bound on K̃s tracks
the empirical value within a multiplicative factor of about 1.7.

VI. CONCLUSION

We have to the best of our knowledge introduced the first
provably consistent algorithm for optical communications cen-
troiding when signal and background intensities are unknown
a-priori, and provided explicit rates of convergence for the sub-
problem of Ks estimation in PPM links, as well as accelerated
algorithms that perform better at up to medium range. Since

decoding relies on Kb and Ks estimation to create log-
likelihood ratios and timing estimates [13], our guarantees also
help these related endeavors. Using our improved estimators
of the signal and background intensities could also make the
work of [10, 11] more practical through not relying on a-
priori knowledge of these constants, but this and creating
convergence guarantees of the resulting centroid estimator is
left for future work.

APPENDIX: ADDITIONAL PROOFS

Proof of Lemma 1. Without loss of generality take σ = 1.
Define Ii(x0, y0) =

∬
Di
φ(x− x0)φ(y− y0) dx dy and I(x0, y0) =∬

D
φ(x − x0)φ(y − y0) dx dy. By the quotient rule we know

that ∂x0 Pi(x0, y0) > 0 if and only if I∂x0 Ii − Ii∂x0 I > 0, or
equivalently if

∂x0 Ii
Ii

>
∂x0 I

I . But since the common integrand
defining Ii and I is uniformly positive we know Ii < I, or
1/I < 1/Ii , and hence ∂x0 Pi(x0, y0) > 0 if

∂x0 I − ∂x0 Ii =
∬

D\Di

(x − x0) φ(x − x0)φ(y − y0) dx dy

is strictly negative. Consider now i = 1 and x0 > 0. For any
x > 0 and arbitrary y, φ(x− x0)φ(y− y0) ≥ φ(−x− x0)φ(y− y0).
Thus Fubini’s Theorem tells us

∂x0 I − ∂x0 Ii ≤
∫ R

−R

∫
R
(x − x0)φ(x − x0)φ(y − y0) dx dy

=

∫ R

−R

(x − x0)φ(x − x0) dx = −1√
2π

e−
1
2 (R+x0)

2 (
e2Rx0 − 1

)
,

which is strictly negative. To summarize, this combined with
symmetry ensures ∂x0 P1 > 0 and ∂y0 P1 > 0 uniformly.
Similarly, ∂x0 P4 > 0 and ∂y0 P4 < 0 uniformly.

Now we prove injectivity. Our derivative information and
symmetry guarantee that Pi(x0, y0) = maxj Pj(x0, y0) if and
only if (x0, y0) are in the i-th orthant, so take (x0, y0) , (x ′0, y

′
0)

in the first orthant and define fi(t) = Pi(t x ′0+(1−t)x0, ty′0+(1−
t)y0) for all t ∈ R. Without loss of generality, two scenarios
are possible: x0 ≤ x ′0 and y0 ≤ y′0, or x0 ≤ x ′0 and y0 ≥ y′0.
In the former case, f ′1 (t) > 0 for all 0 < t < 1, and hence
P1(x0, y0) = f1(1) , f1(0) = P1(x ′0, y

′
0). In the latter, f ′4 (t) > 0

for 0 < t < 1 and similarly P4(x0, y0) = f4(1) , f4(0) =
P1(x ′0, y

′
0). In any case, p(x0, y0) , p(x ′0, y

′
0). �

Proof of Lemma 3. From the moment generating function of
a Poisson random variable [19] we can compute

ϕλmin−Xi (t) = logEet(λmin−Xi ) ≤ tλmin + λmin(e−t − 1) =: ϕ(t)

To compute the Fenchel-Legendre conjugate of this ϕ we just
need to perform a simple univariate optimization, verifiable
by a computer algebra system: ϕ∗(t) = supα≥0

(
αt − ϕ(α)

)
=

log
( λmin
λmin−t

)
+t defined on t ∈ [0, λmin). This ϕ∗ has a functional

inverse (ϕ∗)−1(log N) = λmin − W
( eλminλmin

N

)
where W(z) is

the Lambert-W function (see [21]). Theorem 2.5 of [18] then
ensures

E min
1≤i≤N

Xi = λmin − E max
1≤i≤N

(λmin − Xi) ≥ λmin − (φ
∗)−1(log N)

= W
( eλminλmin

N

)
≥ λmin + log

λmin
N
− log

(
λmin + log

λmin
N

)
≥ λmin − log(N + 1).
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The bound of the Lambert-W function comes from [21] and
holds so long as λmin ≥ log(N) + 1 > W(eN).

For the expected maximum we can play a similar game. In
particular, consider ϕXi (t) = logE exp

(
tXi

)
≤ λmax(et − 1) =:

γ(t). This function γ has Fenchel-Legendre conjugate

γ∗(t) = sup
α≥0

(
αt − γ(α)

)
= λmax − t + t log

t
λmax

and respective inverse

(γ∗)−1(y) =
y − λmax

W
( y−λmax
eλmax

) ,
both computable by simple calculus. The scalar inequality
−1/W(x) ≤ 1/(1 −

√
2
√

1 + ex) for −e−1 ≤ x < − 1
2 e−1 can

be verified in a computer algebra system, which applied to
(γ∗)−1 ensures (γ∗)−1(y) ≤

(
1−
√

2
√

y
λmax

)−1 (
λmax− y

)
so long

as λmax > 2y. Theorem 2.5 of [18] again guarantees

E max
1≤i≤N

Xi ≤ (γ
∗)−1(log N) ≤

λmax − log N

1 −
√

2
√

log N
λmax

under our condition that λmax > 2 log N . �

Proof of Lemma 4. The situation when k = 0 is clear since
the variables n

(j)
∗ are equal in which case Em∗ = 0, so

consider the other case k = 1. By Hoeffding’s inequality
[18, Sec 2.3] applied to the binomial random variables n(j)∗ ∼
Binomial(n, 1

M |{i : i = 1, 2, . . . , M − k, 0 ≤ i + j mod M + P ≤
M − 1}|) we know

P
( 1
n(M−k) n

(j)
∗ ≥

1
M + t

)
= P

( 1
n n
(j)
∗ ≥

M−k
M + (M − k)t

)
≤ P

( 1
n n
(j)
∗ ≥

1
nEn

(j)
∗ + (M − k)t

)
≤ e−2n(M−k)2t2

.

Since P < M , 2P of the n
(j)
∗ variables contain summands

from components of n that are zero almost surely and hence
are always less than neighboring windows. There are then
at most M + P − (2P) = M − P slots which can have the
maximum, so P

(
m∗ ≥ t

)
≤ (M − P)e−2n(M−k)2t2

by a union
bound. Integrating gives

Em∗ =

∫ ∞

0
P
(
m∗ ≥ t

)
dt ≤ (M − P)

∫ ∞

0
e−2n(M−k)2t2

dt

= k
M − P
M − k

√
π

8n
<

k
√

2n
.

But the only time the maximal n(j)∗ won’t occur at j ∈ {0, 1}
is when one of the end signal slots, say n1, is larger than the
sum, say N = n2 + · · · + nP+2 of P + 1 signal slots. Since
N − n1 ∈ [−n, n] and EN − n1 =

P
M , Hoeffding tells us again

that this happens with probability at most (M−P) exp
(
− nP2

2M2

)
.

When the maximum occurs in the first two slots, E[m∗ | j∗ ∈
{0, 1}] ≤ k

M−k

√
π
2n < k

M−k

√
2
n . The final bound comes from

conditioning on this event in computing the expectation. �
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